Correlating Instrumentation Data to System States: A Building Block for Automated Diagnosis and Control
نویسندگان
چکیده
This paper studies the use of statistical induction techniques as a basis for automated performance diagnosis and performance management. The goal of the work is to develop and evaluate tools for offline and online analysis of system metrics gathered from instrumentation in Internet server platforms. We use a promising class of probabilistic models (Tree-Augmented Bayesian Networks or TANs) to identify combinations of system-level metrics and threshold values that correlate with high-level performance states—compliance with Service Level Objectives (SLOs) for average-case response time—in a threetier Web service under a variety of conditions. Experimental results from a testbed show that TAN models involving small subsets of metrics capture patterns of performance behavior in a way that is accurate and yields insights into the causes of observed performance effects. TANs are extremely efficient to represent and evaluate, and they have interpretability properties that make them excellent candidates for automated diagnosis and control. We explore the use of TAN models for offline forensic diagnosis, and in a limited online setting for performance forecasting with stable workloads.
منابع مشابه
A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملFuzzy gain scheduling of PID controller for stiction compensation in pneumatic control valve
Inherent nonlinearities like, deadband, stiction and hysteresis in control valves degenerate plant performance. Valve stiction standouts as a more widely recognized reason for poor execution in control loops. Measurement of valve stiction is essential to maintain scheduling. For industrial scenarios, loss of execution due to nonlinearity in control valves is an imperative issue that should be t...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملFUZZY BASED FAULT DETECTION AND CONTROL FOR 6/4 SWITCHED RELUCTANCE MOTOR
Prompt detection and diagnosis of faults in industrial systems areessential to minimize the production losses, increase the safety of the operatorand the equipment. Several techniques are available in the literature to achievethese objectives. This paper presents fuzzy based control and fault detection for a6/4 switched reluctance motor. The fuzzy logic control performs like a classicalproporti...
متن کاملArtificial Intelligence for Inferential Control of Crude Oil Stripping Process
Stripper columns are used for sweetening crude oil, and they must hold product hydrogen sulfide content as near the set points as possible in the faces of upsets. Since product quality cannot be measured easily and economically online, the control of product quality is often achieved by maintaining a suitable tray temperature near its set point. Tray temperature control method, however, is n...
متن کامل